基于三維GIS技術的公路交通數(shù)字孿生系統(tǒng)

發(fā)布時間:2020-04-03 14:22:45 作者:臻圖信息 閱讀量:6918

    交通運輸系統(tǒng)是四個現(xiàn)代化建設的重要保障,在“一帶一路”倡議規(guī)劃背景下,互聯(lián)網(wǎng)+、智慧交通提升到國家新戰(zhàn)略。智慧交通的基石是建立可映射物理世界的虛擬世界,因此大多數(shù)交通管理平臺項目通過抽象建模構造二維電子地圖,并在抽象模型上集成數(shù)據(jù)及分析工具,實現(xiàn)運營期信息化管理。隨著設計、施工、運營全生命周期細化管理日益增長的需求,傳統(tǒng)的交通地理信息(Geographic Informa-tion System-Transportation,GIS-T)系統(tǒng)的壓力也隨之增加。

    交通基礎設施數(shù)字化映射為三維GIS信息世界的技術方案是突破二維GIS-T系統(tǒng)局限的有效途徑,其已成為交通信息化研究的熱點課題,目前研究主要集中于建模、數(shù)據(jù)庫協(xié)同、可視化分析。

    (1)在建模方面,通過三維GIS平臺場景中集成建筑信息模型(Building Information Modeling, BIM)軟件創(chuàng)建的地物模型達到宏觀和微觀的信息表達是最直觀的思路。實踐發(fā)現(xiàn),交通以線狀工程為主,其結構復雜性遠低于建筑工程,照搬建筑業(yè)BIM不可復用的手工建模方式具有高人力投人的特點,缺乏項目各生命周期出現(xiàn)的模型、選線變更高效應對手段。點云、傾斜攝影等基于機載激光雷達的標準數(shù)據(jù)(LIDAR Standard, LAS)雷達和圖形學的建模方法十分先進但只適用于運營期,且模型單體化處理技術尚不成熟,難以將場景準確地劃分為單體化模型對象集成的相應孿生數(shù)據(jù)。

    2在部署及數(shù)據(jù)協(xié)同方面,目前以WEB為中心的瀏覽器/服務器模式(Brower/Server, B/S)部署方案已較為成熟可行,開發(fā)者可將創(chuàng)造的資源和服務在云端進行托管,前端通過表述性狀態(tài)傳遞(Representational State Transfer, REST)風格的應用程序接口(Application Programming Inter-face, API)進行調用,將內容服務于用戶?,F(xiàn)有研究集中于如何通過語義網(wǎng)組織多源數(shù)據(jù),以及如何在滿足需求的同時盡可能統(tǒng)一模型數(shù)據(jù)結構,以便模型與數(shù)據(jù)庫能夠協(xié)同應用。由于剛剛起步,語義編碼采取拼音簡寫的原始方式,存在歧義的同時,編碼包含的語義單薄且語義間關系未表達。

    (3)在可視化分析方面,由于只重視三維幾何模型,不重視物理、運行、規(guī)則建模,且虛擬模型配套的標識解析編碼原始,使得三維GIS功能停留在外觀展示,制約了數(shù)據(jù)集成、三維災害仿真、地理查詢等實用服務的開發(fā)。

    基于公路交通系統(tǒng)特性和以上分析,筆者通過提出的五維模型,將基礎設施虛擬模型建設問題標準化為數(shù)據(jù)孿生問題,著重闡述了針對不同生命周期三維幾何模型對應的GIS+BIM的建模方案,并展示了實施效果,針對孿生數(shù)據(jù)與數(shù)據(jù)實時交互等應用準則。結合建模方法提出一套標識編碼方案,繼而在物理、規(guī)則模型建模及數(shù)據(jù)庫協(xié)同,體現(xiàn)其應用價值。最后,以數(shù)據(jù)融合的視角探討了交通數(shù)據(jù)孿生系統(tǒng)的應用并以實例進行了說明。

1交通基礎設施幾何模型建模流程

1. 1公路交通幾何模型建模方案分析

    數(shù)字孿生(digital twin)是以數(shù)字化方式創(chuàng)建物理實體的虛擬模型,在交通運輸行業(yè),將道路平縱橫設計繪制為計算機輔助設計(Computer Aided De-sign, CAD)圖紙,將路網(wǎng)GIS矢量要素映射組織為電子地圖都屬于初級的數(shù)字孿生范疇。GIS數(shù)據(jù)結構的豐富使得三維映射物理世界成為可能,即可利用點、線、面、不規(guī)則三角網(wǎng)(Triangulated IrregularNetwork, TIN)、柵格、多面體、網(wǎng)絡公用數(shù)據(jù)格式(Network Common data Form, NCF)等數(shù)據(jù)結構將交通構筑物映射到數(shù)字地球,這一映射方式即為建模過程。在該過程中,關鍵技術為幾何建模數(shù)據(jù)的獲取與處理、三維幾何建模技術、虛擬模型的數(shù)據(jù)組織和管理。

    幾何建模數(shù)據(jù)指客觀反映現(xiàn)實的地物測量及設計數(shù)據(jù),是建模的基礎。因此,需首要解決建模數(shù)據(jù)來源問題,下表匯總分析了目前可作為建模數(shù)據(jù)的文件來源。道路設計圖紙與衛(wèi)星遙感數(shù)據(jù)應用廣泛,屬于既有數(shù)據(jù),因此獲取難度較小,地面遙感數(shù)據(jù)需要無人機搭載激光雷達專門采集,數(shù)據(jù)獲取的成本大。另外,需考慮其數(shù)據(jù)存在的生命周期,如需將設計方案進行數(shù)據(jù)孿生繼而進行評審,則只能使用設計圖紙作為建模數(shù)據(jù)。綜上所述,應選擇道路設計圖紙及衛(wèi)星遙感數(shù)據(jù)作為三維幾何建模數(shù)據(jù)來源,地面遙感數(shù)據(jù)作為運營期監(jiān)控的主要數(shù)據(jù)源。

        

      三維幾何模型作為連接虛擬模型與物理實體的門戶,是數(shù)字孿生實現(xiàn)的基礎。三維幾何建模手段主要分為手工建模和規(guī)則建模,其中:手工建模指人利用RevitBIM軟件將CAD圖紙翻模為三維模型并轉化為三維GIS技術支持的數(shù)據(jù)格式,最后根據(jù)測量信息匹配至數(shù)字地球的某一坐標,完成共享;規(guī)則建模又被稱為自動化批量建模,目前具有代表性的軟件為臻圖的ZTMAPGIS,旨在將地物的幾何、紋理等信息利用計算機集成規(guī)則(Computer Genera-ted Architecture, CGA)語言進行描述,二次開發(fā)的CGA建模代碼加載到交通地物抽象模型上即可完成批量化的三維模型建模。由于交通基礎設施屬于線狀工程,其特點為規(guī)模大但連續(xù)重復且?guī)缀我?guī)律性強,同時線路方案變更可輕松利用抽象模型及代碼形參輸入實現(xiàn)虛擬模型變更,因此CGA極為適用于交通工程幾何建模。

1. 2三維幾何模型建模流程

1. 2. 1建模數(shù)據(jù)處理

    基于以上分析,提出如圖所示建模流程,建模數(shù)據(jù)處理是指從設計圖紙資料和遙感影像提取以下4種信息:

   1地面地形測量數(shù)據(jù),通過CAD圖紙中的等高線圖層進行提取。

   2衛(wèi)星高程,與(1)融合用于創(chuàng)建場景數(shù)字高程模型(Digital Elevation Model, DEM) 。

   3道路平縱橫信息來源于CAD設計文件,用于抽象線路模型建立,及輔助修正DEM

   4紋理材質,采集水泥、瀝青路面照片,用于ZTMAPGIS中的CGA建模貼圖。

 

1.2.2建模地形及抽象模型生成

DEM的數(shù)據(jù)來源于地面地形測量及衛(wèi)星遙感掃描,其中地形測量數(shù)據(jù)通常集成于道路平面設計圖中的等高線圖層(等高線間的疏密程度直觀地表征地形精確程度)。在公路選線設計階段,一般需要基礎的地面測量高程作為基礎進行前期選線評估等工作,此類測量數(shù)據(jù)需要工程測量團隊進行實地勘測,勘測具體按照中華人民共和國國家標準:工程測量規(guī)范執(zhí)行。而其測量成果一般包含勘測的地形地物圖紙數(shù)據(jù)以及部分精準的全球定位高程控制點數(shù)據(jù),通過對能夠形成攜帶高程信息的等高線CAD圖紙圖紙進行數(shù)字化處理,沿等高線進行等距采樣即可為GIS系統(tǒng)輸出創(chuàng)建TIN所需的地形點文件。影響測量精準度的因素主要為人員、環(huán)境、儀器。通過一定的控制方法,如嚴格按照規(guī)范養(yǎng)護與校準儀器、嚴控放樣的精度等,可降低或避免測量誤差(一般可以將高程誤差控制在厘米級)。在實際工程中,雖然能夠將誤差控制到足夠小,但由于條件限制,難以保證對地形進行連續(xù)測量,繼而引發(fā)采樣點形成非凸集合,同時TIN構造地形原理為將測量點利用不規(guī)則三角網(wǎng)連接起來從而逼近地形曲面,非凸集性質勢必造成錯誤賦值。圖所示為高程數(shù)據(jù)是否凸集化處理所形成的DEM效果比對,由圖可知,在地形點非凸邊界,三角網(wǎng)也會連接,生成錯誤地形。因此,解決該問題的關鍵即為保證采樣點為凸集。

 

    對高程精度要求不高的區(qū)域可使用遙感高程補齊以解決非凸現(xiàn)象,遙感高程通過等級機制來劃分其對應的精度,目前分級從最低Level-0(精度為134. 75 km)到最高Level-18(精度為8. 22 m)19個等級。其劃分的依據(jù)為每個像素元對應正方形區(qū)域的寬度,對同一地理區(qū)域的描述中,若遙感高程等級越高,對應像素元的邊越小,區(qū)域內所容納的像素點元數(shù)目越多,對地形高層的描述也更準確。因此,調用18級的遙感高程即可達到對目標區(qū)域高層信息最逼近真實的描述,將其與地面地形測量數(shù)據(jù)進行嵌套即可解決地面地形測量數(shù)據(jù)不連續(xù)的問題。遙感高程數(shù)據(jù)提供了tif圖像格式的原生支持,此類文件通過GIS“contour算法可還原出與人工測量地形類似的等高線CAD圖紙。本文在設計好容差后,利用地面測量高程與衛(wèi)星遙感高程進行曲面合并,合并前后的地形效果如圖所示,其原理為利用精確的地面測量地形對衛(wèi)星高程進行賦值(凸集),既滿足精度又滿足凸集。

抽象模型是規(guī)則建模的基礎,如何精確地在三維空間展示線路的平縱橫信息是提高建模精度的關鍵技術。令人遺憾的是,此問題常被人忽視,只注意線路平曲線,利用平曲線表面插值到地形(DEM)以獲得線路縱斷面信息。如此必然存在兩個問題:

1)DEM是由TIN算法得出,TIN本身屬于一種逼近方法,其高程的誤差會傳遞至縱斷面;

2在建造期,挖填方一定會對地形做出改變,如果不存在線路與地形聯(lián)動編輯,則勢必出現(xiàn)地形突兀現(xiàn)象。

因此通過Civildd3D二次設計將二維的線路設計圖紙生成三維的抽象模型,具體步驟如下:

    步驟1通過繪制工具將平曲線要素還原為Civil3D路線對象。

    步驟2將設計文件中的縱斷面要素,通過樁號匹配至線路對象,完成縱斷面設計。

    步驟3通過橫斷面裝配,完成建模參考地形(DEM)的精確校正。

    在完成二次設計后,使用放樣工具將之導出為點集與GIS通信(),并在GIS中使用數(shù)據(jù)管理工具生成標準的矢量抽象模型。連續(xù)地物(橋隧路中心線)五米放樣后在GIS中生成線要素,離散地物(如橋墩)按其坐標直接轉化為點要素。特別地,擋土墻雖然屬于連續(xù)地物,但其貼合于地形,在線性抽象模型上建模不如點的貼合效果好。

 

1.2.3規(guī)則建模

    國家在《建筑信息模型設計交付標準》中提出最小模型單元(Level of Details, LOD)和信息穿深等級用于規(guī)范工程各生命周期的虛擬模型精細化程度。在設計期要求體現(xiàn)達到如道路、橋梁等功能層面模型,體現(xiàn)其大體輪廓和孿生規(guī)劃層面的數(shù)據(jù);在運營期要求達到如樁基等構件層面的模型,體現(xiàn)其局部幾何尺寸,孿生更加豐富的數(shù)據(jù)。結合上文分析,模型所達到的精細程度取決于建模數(shù)據(jù),遵從建模數(shù)據(jù)條件設計的建模方案才具有可行性。

    設計期具備的道路中心線的平縱橫信息、原始地形及經橫斷面修正的設計地形,其建模訴求為快速地將抽象矢量模型轉化為三維幾何模型。獨立CGA建模方案可比喻為一個曲線積分過程,用CGA語言幾何、紋理函數(shù)描述橫斷面構造,該橫斷面構造即為被積函數(shù),沿中心線路徑積分即可完成快速建模。同時,橋、道、隧具有完全不同的橫斷面,且無法由代碼形參輸入改變,因此函數(shù)為一分段函數(shù)。

    本文首先按分別設計CGA對象,再通過抽象模型與參考地形的高程差判斷其應該繼承哪個對象(需考慮誤差),繼而使用由CGA函數(shù)描述橫斷面的被積函數(shù)完成建模。此代碼可自適應地結合參考地形,對道路、梁橋、隧道進行批量自動建模,形成展示方案。所示為某山區(qū)高速公路的互通式立交建模,在地形的作用下,抽象模型會自適應的生成道路、梁橋;同時,孿生于抽象模型的道路寬度可作為CGA的形參輸入,通過改變數(shù)據(jù)即可完成快速的動態(tài)建模,如中通過對閘道寬度方案建模比對,右圖明顯需要挖方才能實施(1.2.2節(jié)所述地形突?,F(xiàn)象)。獨立CGA建模數(shù)據(jù)依賴小,在擁有高精度地形時,可結合多光譜遙感判讀的線路矢量數(shù)據(jù),繼而完成大規(guī)模批量建模。

 

圖一

 

圖二

但獨立CGA建模方案存在以下問題:

1)CGA幾何創(chuàng)造函數(shù)能力有限,難免在塔柱、懸索等復雜結構建模上存在不足;

2在工程運營期,模型變?yōu)橛煞猪棙嫾b配成整體工程,繼而在分項構件上細化孿生其現(xiàn)實信息,而獨立CGA模型依賴道路中心線去繼承各種對象完成建模,無論再怎么繼承也是一個橫斷面對象,從原理上無法滿足LOD 3.0構件級交付標準。

因此,本文提出裝配式CGA建模方案,其思路源于工程預制,現(xiàn)實工程都可由設施基本結構分類,預制件構筑工程,虛擬模型也可參照現(xiàn)實,預制模型簇構筑虛擬模型。該思路成為規(guī)則建模方案基本思路之一。首先將現(xiàn)實地物分解為以構件為葉結點的樹狀結構,依此結構將現(xiàn)實物理實體按構件的拓撲關系轉化為抽象模型,編寫CGA代碼構筑裝配體,以裝配體的外框控制構件大小,再使用達索的SolidWorks對預制構件建模并形成通用3D文件,最后使用i函數(shù)將裝配體替代為模型即可,如圖所示。構件依分屬劃入不同GIS圖層,在保證最終模型為獨立單體對象的同時,滿足依圖層批量化操作條件。裝配型CGA代碼只需依據(jù)點線面抽象模型,實現(xiàn)xyz軸賦值、旋轉、平移及目標模型調用路徑和染色,共計11項形參設計即可。其技術難點在于如何創(chuàng)造一種通用映射方法將構件的裝配空間拓撲映射為抽象模型。

 

2標識解析體系及孿生數(shù)據(jù)

2.1交通基礎設施分類樹

    依據(jù)上述分析,實現(xiàn)LOD3精度的建模方案往往著眼于某一對象,根據(jù)個人認識對對象進行拓撲分解并建模,缺乏統(tǒng)一標準。與此同時,虛擬模型必須考慮其孿生數(shù)據(jù)存儲及應用中的數(shù)據(jù)交換,如橋梁可簡單分為橋面和橋墩,將配筋情況數(shù)據(jù)孿生至橋墩時,如果墩柱和承臺的配筋間距不一致,設計數(shù)據(jù)庫就出現(xiàn)了困難。若要一并解決分解方案及數(shù)孿生問題,自然先要解決交通基礎設施分類問題。

    經過多年發(fā)展,交通工程學作為一個知識領域,其目錄中包含成熟的知識本體,本體的概念和關系即可作為基礎設施分類依據(jù)。本文擬以交通工程中最復雜的斜拉橋闡述分類過程。一條公路工程由橋道隧組成,斜拉橋作為橋梁的一種,由其上下部、橋塔等具體實現(xiàn)某一功能的單元組成(如下部結構實現(xiàn)將橋梁荷載傳遞至地基);實現(xiàn)功能依賴于各個單系統(tǒng)分工協(xié)作(如橋墩傳遞上部結構荷載至基礎,基礎最終將荷載傳遞至地基),而單系統(tǒng)由不可再分的構件組成。斜拉橋分解如圖所示,樹狀結構足以容納常見構件,足以滿足拓撲分解,且為后續(xù)工作打下基礎。

 

2.2標識解析編碼

    隨著幾何模型的建立,初級數(shù)字虛擬世界的骨架被搭建起來,但來自物理實體孿生數(shù)據(jù)只需集成至其映射模型即可的思路無法解決數(shù)據(jù)的多源異構性問題。舉例來說,針對某段橋面這一物理實體,同時包含靜態(tài)混凝土抗凍等級和動態(tài)交通量信息,其數(shù)據(jù)存儲的邏輯模型顯然異構,將每小時的交通量設計為一個字段與混凝土抗凍等級存儲在一張表內無疑為一種黑色幽默;同時實踐表明,關系型數(shù)據(jù)庫設計要求至少滿足三范式,即將同一物理實體的不同類信息分別進行存儲,如果沒有行之有效的主鍵設計,一對多的存儲必然引發(fā)信息孤島。

目前,標識解析被認為是唯一有希望解決信息孤島的技術。首先標識解析編碼的概念應從兩方面理解,標識指構造某種符號區(qū)分實體,解析指構造的符號應該具有規(guī)律和語義,易于被人或機器識別。落實到本系統(tǒng)即提出一種機器碼編撰方案,為所有模型單元構造身份證,其主要內涵為:

1)為實體ZTMAPGIS要素固有的屬性數(shù)據(jù)表提供主鍵;

2)提供有效途徑,以便將異構數(shù)據(jù)源的數(shù)據(jù)連接至虛擬模型;

3)具有一定的含義,可進行一定的簡單篩選查詢。

圖所示為設計4個區(qū)來編撰機器碼如圖所示,以類型區(qū)、樁號區(qū)、公路編號區(qū)、構件編號區(qū)編撰方式展開敘述,為論述方便,標識解析碼簡稱機器碼。

 

    1類型區(qū)

    交通基礎設施分類樹體現(xiàn)了各項基礎設施構件的本體關系。由2.2上方)可知,利用類似huffman樹的結構規(guī)律,可以將任何斜拉橋分解為具體構件,構件模型位于葉結點,從根節(jié)點到葉結點的分類路徑即可作為其類型編碼依據(jù)。對于整個公路而言,擬設計六位數(shù)字進行編碼,如“223013”代表橋梁一拱式橋一上部結構一主梁一箱梁,其中,0表示在此分類層面無分支。此類編碼方式可對106種構件進行編碼,容量可滿足需求,再加兩位起始結束(B、E)字符用于標識第一區(qū)域。這樣做是因為純字分類編碼會與樁號編碼區(qū)的里程位置混淆,引發(fā)查詢錯誤。如需要查詢路段上所有照明燈的集合,可使用LIKE " 601”進行模糊查詢,但若樁號區(qū)有K010601字段,則位于10 km 601 m處的構件單位將被全部查詢出來。若加上起始和結束字符,則可將查詢范圍限定在類型區(qū),避免查詢錯誤。

    2樁號區(qū)

    里程樁號作為特定道路段精準定位手段,在前文二次設計時產生,基于已有道路平、縱、橫設計文件對路線對象進行GIS圖層繪制,并將線路離散化為以中心線為基準的等距采樣點集數(shù)據(jù),進而添加樁號字段并批量賦值,所有構件對應的里程樁號也隨之確定,在機器碼中添加樁號即可快速的對某路段某模型進行追蹤。

    3公路編號區(qū)與構件編號區(qū)

    由于里程樁號來源于線路設計,是一個局部變量,在多條線路組成的系統(tǒng)中會出現(xiàn)重復,因此添加公路編號區(qū)用于保證唯一性(G15X)。同時,構件的樁號繼承于對應的線路中心線,而在一個橫斷面中存在交通設施對稱建造的情況,因此最后設計兩位構件編號確保機器碼唯一性。

    本文通過在構件地物的抽象模型(點、線、面)上加載建模規(guī)則,完成三維幾何模型創(chuàng)建,現(xiàn)實構件、抽象模型、實體三維模型是一一對應的,隨著場景的精細化大型化,構件對象數(shù)目幾何增,必須從規(guī)律入手,編寫程序自動為虛擬模型填充機器碼。思路如下:將某一圖層(如某段線路的橋面)的模型應有的機器碼字段拆分為4部分,如G15公路120里程段起點的瀝青混凝土橋面所對應的機器碼為" B235121EK012001G15X01”拆分為分類碼:"B235121E";樁號碼:" K012001";公路編號碼:"G15X";構件編號碼:" 01"。此圖層的模型均為G15公路內瀝青混凝土橋面,因此分類碼、公路碼量固定為B235121EG15X,若路段中心線離散化點集采樣距離為5m(由前文放樣方案確定),其臨后的橋面的樁號碼為“K012006",以此樁號遞增5 m直至訖點,最后將4個字符串合并,并循環(huán)賦值到對應機器碼字段即可完成自動填充。

2. 3交通基礎設施孿生數(shù)據(jù)分析

    孿生數(shù)據(jù)(Digital Data, DD)是數(shù)字孿生的驅動,文獻做出了物理實體(Physical Entity,PE)數(shù)據(jù)、虛擬實體(Virtual Entity,  VE)數(shù)據(jù)、服務數(shù)據(jù)(Service, Ss)數(shù)據(jù)、知識數(shù)據(jù)及融合衍生數(shù)據(jù)的基礎分類,在公路交通數(shù)字孿生系統(tǒng)落實為:

    1PE地位相同,PE數(shù)據(jù)是數(shù)字孿生驅動的基礎,來自于公路交通基礎設施中的全要素物理實體,主要包括:實體屬性、實時運行狀態(tài)、運行性能及環(huán)境4方面數(shù)據(jù)。全要素物理實體首先包括反映基礎設施實體材料、參照國家標準、設計性能等靜態(tài)結構屬性數(shù)據(jù)。

    2VE數(shù)據(jù)為VE包含的數(shù)據(jù),VE是多維度、多空間尺度對PE進行刻畫和描述的模型,落實到本文即為通過GIS、 CGA、 Solidworks等軟件根據(jù)PE建立的抽象實體模型。VE數(shù)據(jù)分為幾何數(shù)據(jù)(幾何尺寸、裝配關系、位置)和通過機器碼關聯(lián)數(shù)據(jù)庫的屬性數(shù)據(jù)(材料屬性、載荷、配筋、工法)。

    3服務數(shù)據(jù)(Ss)是對數(shù)字孿生應用中所需各類數(shù)據(jù)、算法及仿真結果等進行服務化封裝,Ss數(shù)據(jù)包括算法、模型、處理方法等數(shù)據(jù)。以實現(xiàn)某區(qū)域積水仿真服務為例進行闡述此對象的PE為現(xiàn)實中某一區(qū)域,以涉及的VE數(shù)據(jù)為依據(jù)創(chuàng)建此區(qū)域的高程地形及該區(qū)域路面積水監(jiān)測設備的位置、讀數(shù)。Ss數(shù)據(jù)指V8算法處理地形后分析得出的水文仿真、仿真結果結合地面積水監(jiān)測設備讀數(shù)進行賦值的程序及最終展示的柵格數(shù)據(jù),其鮮明特征可在VE數(shù)據(jù)上加工得出,區(qū)別于狹義的結構化數(shù)據(jù),是更加廣義的數(shù)據(jù)、文件。

    本文從數(shù)據(jù)關聯(lián)的角度提出4條原則,保證虛擬模型與孿生數(shù)據(jù)之間的聯(lián)系,具體如下:

    1依據(jù)上文分析,機器碼已完成VE中海量物理實體的唯一標識,繼而通過機器碼匹配至虛擬模型即可完成數(shù)據(jù)的孿生(如上方展示了橋梁下部結構的數(shù)據(jù)庫設計)。因此,提出第一條設計原則:所虛擬模型以機器碼作為主鍵,在開發(fā)專題數(shù)據(jù)庫時,調用此主鍵進行連接以獲得相應數(shù)據(jù)。

    2本研究的實體具有GIS特色,在第一章建模過程中,每一個三維實體模型單元都基于抽象量模型生成,即抽象和實體模型是物理實體不同維度的映射(虛擬模型);另外,GIS的很多空間分析工具以矢量為輸入進行分析(3D緩沖分析、鄰近匯總分析),生成VE數(shù)據(jù),放棄矢量抽象模型等于閹割分析功能,因此提出第二條設計原則:針對同一物理實體所有維度映射的模型應作為一整體,共享機器碼。

    3PE數(shù)據(jù)還需反映現(xiàn)實的運行狀況(應力傳感器)、實時交通量(環(huán)形線圈傳感器、閘機讀數(shù))等具有動態(tài)性的數(shù)據(jù),因此提出第三條設計原則:對于具有動態(tài)性的PE數(shù)據(jù),應遵從其傳感器進行數(shù)據(jù)庫設計,再通過存儲過程及機器碼匹配至虛擬模型完成數(shù)字孿生。

    (4)對于PE中具有地理信息特征的數(shù)據(jù),可利用GIS的要素進行存儲。只要擁有規(guī)劃七線、實時風速分別等專業(yè)矢量地圖(圖數(shù)據(jù)層中矢量地圖),則可以利用GIS矢量相交工具輕松完成目標模型的關聯(lián),如在虛擬模型的屬性中添加空間參考信息,將極大地增加數(shù)據(jù)維護難度。因此,提出第四條設計原則:使用繪制專業(yè)矢量圖層的方式存儲具有空間性質的環(huán)境、規(guī)劃信息。

    通過以上手段可實現(xiàn)交通基礎設施的數(shù)據(jù)集成和初步描述性可視化分析,在此基礎上借助數(shù)據(jù)融合技術,將PE數(shù)據(jù)融合為VE數(shù)據(jù)、知識數(shù)據(jù),最終實現(xiàn)解釋性和探索性分析。

3數(shù)據(jù)融合與系統(tǒng)驗證

3. 1數(shù)據(jù)融合

    開發(fā)應用服務于用戶是數(shù)字孿生現(xiàn)實意義,對孿生數(shù)據(jù)進行不同層面的融合是實現(xiàn)應用的重要手段。為應對不同層面的數(shù)據(jù)融合,VE模型也進步被細分為幾何模型、物理模型、行為模型和規(guī)則模型。根據(jù)數(shù)據(jù)融合在交通運輸領域的應用歷史,筆者認為本系統(tǒng)最終目的是在交通基礎設施幾何模型上,利用不同層面的數(shù)據(jù)融合算法(表征層、決策層)計算其孿生數(shù)據(jù),得到反應其物理和運行規(guī)則的仿真結果。在這個過程中,交通數(shù)字孿生系統(tǒng)中的幾何、物理、規(guī)則模型可映射為數(shù)據(jù)層、表征層、決策層如圖所示,其中物理模型指在幾何模型的基礎上增加了PE的物理屬性、約束及特征等信息,規(guī)則模型可基于物理模型得出屬性及特征(如路網(wǎng)中車輛空間分布模式特征柵格),通過規(guī)則的學習和演化(CNN學習柵格圖像的特征),使VE具有實時評估、優(yōu)化和預測的能力,對PE進行控制和運行指導,最終供用戶進行精準管理與決策。因此,本文所指的幾何模型、物理模型、規(guī)則模型具有鮮明的層次性,前者依次為后者的基礎。

 

前文所敘述的幾何建模、標識解析過程旨在建立虛實間的橋梁及數(shù)據(jù)孿生問題,因此數(shù)據(jù)層包含虛擬幾何模型與孿生數(shù)據(jù)。數(shù)據(jù)層的算法主要圍繞如何使數(shù)據(jù)精準一致,保證映射質量,主要解決的問題及方法為:

1)配準問題,浮動車技術、衛(wèi)星遙感影像、設計圖紙等數(shù)據(jù)分別存在定位誤差、衛(wèi)星姿態(tài)、投影等誤差源。差分GPS可解決由于GPS的內定向元素引發(fā)的定位誤差,如果車輛GPS軌跡可知,還可使用Kalman濾波進行位置估計;三次卷積(cubic convolution)融合前文建立DEM對遙感影像進行正射校正,同時還可根據(jù)控制點(GroundControl Point,  GCP)對線路設計圖紙進行校正。

2)估計問題,在現(xiàn)實中存在一些較難獲取的數(shù)據(jù),可使用算法根據(jù)其規(guī)律做出可信的估計。如使用去芳香Kalman濾波估計任意無監(jiān)控節(jié)點的交通流信息,亦如使用Kriging插值法對鉆孔數(shù)據(jù)進行擴充,以獲得更優(yōu)良地質斷層判斷依據(jù),服務于道路選線。

3測量問題,基于虛擬幾何模型的高精度快速測量是實現(xiàn)車聯(lián)網(wǎng)自動駕駛的突破點,若能解決定位與建模的精度及信號傳輸速度問題,系統(tǒng)可只根據(jù)車輛位置點計算出其與道路各邊界間最遠距離,控制其行進方向,在夜間貨車司機疲勞駕駛時進行有效應急控制,同時虛擬模型較物理實體的限界更加靈活。如無物理分隔的雙向車道,車載自動駕駛設備必須基于圖形學才能保證車輛在正確的車道行駛,若能繪制一條虛擬限界,該問題就能迎刃而解。

通過對數(shù)據(jù)層進行統(tǒng)計、分類、插值和聚類,產生能夠反映各種物理量空間分布規(guī)律的特征柵格或矢量稱為表征層融合,得到一種特征圖層需要多種空間分析工具融合多種數(shù)據(jù)層的孿生數(shù)據(jù)和抽象模型,使用modelbuilder對融合的流程進行工作流建模利于腳本開發(fā)和服務打包發(fā)布。表征層數(shù)據(jù)融合需實現(xiàn):

1)基于各類傳感器數(shù)據(jù)繪制專業(yè)矢量圖層,繼而可利用專業(yè)圖層對虛擬模型進行關聯(lián)分析,達到交通運輸系統(tǒng)狀態(tài)感知、監(jiān)測;

2對數(shù)據(jù)層空間數(shù)據(jù)進行模式分析,得到如擁堵冷熱點遷移、事故核密度等時空模式特征,繼而解決交通流的區(qū)域控制的邊界問題

    通過二次開發(fā)的工作流,數(shù)據(jù)層的基礎孿生數(shù)據(jù)被融合為反映空間物理特征的表征層信息,管理人員便可依表征圖像做出決策。隨著融合因素需要綜合考慮的特征圖像的維數(shù)增加,決策過程的復雜度也隨之增加。問題的本質為表征圖像+規(guī)則=決策方案,若存在可信的表征圖像決策方案,即可轉化為機器學習問題,以機器學習出專家判斷規(guī)則做出自動決策。

    最后,得到其物理及運行特征的過程中所涉及的幾何模型、孿生數(shù)據(jù)和算法的集合即為物理及規(guī)則模型,這種集合最終可以用restfulAPI描述其業(yè)務邏輯,在數(shù)據(jù)層資源托管至服務器后,利用API接口即可以開發(fā)WEB應用,最終為各類客戶端提供服務。

3. 2系統(tǒng)驗證

系統(tǒng)生命周期內客觀存在基于不同部署方式IT架構確認、方案(Standard Operation

Procedure,SOP)的可行性驗證、二次開發(fā)工作。系統(tǒng)驗證報告有助于在開發(fā)、維護、擴展上幫助使用者了解系統(tǒng),促進信息交流,最終提升計算機系統(tǒng)全生命周期管理水平。目前GAMP5(Good automation manufactory practice 5th)是計算機化系統(tǒng)驗證通用指南,從系統(tǒng)軟件分級開展各層次驗證方案論述,分級方案如表所示。

 

 

   GAMP1類別的軟件屬于IT基礎架構,是系統(tǒng)驗證的先決條件,應主要確認服務器(本文包括ZTMAPGIS for Server、Portal、數(shù)據(jù)庫托管服務器)的部署方式。常見的部署方式為云端部署(SaaS)、本地部署(On-premises model)及混合部署,云端部署具有集群部署及使用組織免于維護硬件的特點,在經濟性和可靠性上優(yōu)于本地部署,若對數(shù)據(jù)保密性有特殊要求,也可使用混合部署方式將 ZTMAPGIS forServer部署至本地。另外,為保證開發(fā)的應用正確運行,需要驗證各軟件的版本類型(如基本版和先進版可調用的API不一樣)GIS服務器提供的API版本,如在GISJavascript提供的API接口3. 6版本和4. 11版本變更中,切片地圖服務圖層的re-

quire函數(shù)由原來的esri/layers/ZTMAPGISDynamic-MapServiceLayer變更為esri/Layers/TileLayer,若調用不當,應用程序無法工作。

    GAMP3類別的軟件主要用于開發(fā)GIS資源專業(yè)軟件,是影響建模方案可行性、質量的重要因素,應從軟件可輸出文件格式和行數(shù)限制重點對其功能進行驗證。舉例來說,CityEngine理論上支持3ds、fbx、obj等三維模型文件,創(chuàng)造三維素材的GAMP3類軟件需首先判斷其是否具有直接或間接的具備CityEngine支持文件格式的輸出能力與輸出模型完整度,在此基礎上對軟件展開功能測試得出驗證結論,3ds Max、Skecth Up雖具備直接輸出ads的能力,但Solidworks具備更豐富的接口,通過與其他工程軟件的文件直讀也能達到相應目的,同時其參數(shù)化與復雜工程結構設計能力更強,且前者輸出的模型材質保留完整程度、模型三角節(jié)點丟失率等指標不如后者,因此選用更為可靠的Solidworks作為3D模型資源開發(fā)的專業(yè)工具。與此同時,文件的行數(shù)限制也需重點驗證,上文第一張圖所示工作流中標注了經測試可行的數(shù)據(jù)傳輸文件格式,如生成滿足精度要求的DEM需百萬級數(shù)據(jù),但xls、 xslx無法滿足,應選擇平面文件類型(txt、csv)進行傳輸。

GAMP4/5類軟件為在前兩類軟件基礎上進行二次開發(fā)的軟件,其驗證手段應面向開發(fā)人員進行白盒測試,具體包括:

1)CityEngine工作環(huán)境中的CGA代碼、調用模型路徑進行檢查;

2)驗證平臺源代碼API調用版本,審查代碼內部邏輯;

3)面向需求,驗證是否基于控件開發(fā)可行性,若涉及復雜的地理處理任務,使用modelbulider(隸屬于ZTMAPGIS )對應用工作流腳本進行搭建、發(fā)布托管等測試;

4)審核坐標系,在WEB發(fā)布的資源一般使用WGS84橢球體作為參照,國內設計院偏好使用克拉索夫斯基橢球體作為參照(北京54坐標),若不進行投影轉換,會產生影響服務的誤差。同時,可利用第三方底圖服務對虛擬模型進行精度驗證,圖所示為橋梁虛擬模型與天地圖底圖的匹配情況,模型無偏移的匹配到正確的地理位置。

 

4應用

    交通數(shù)字孿生系統(tǒng)可作為實現(xiàn)智慧交通、智慧城市的有效技術手段,交通運輸系統(tǒng)在其全生命周期內實施數(shù)字孿生工程,可極大地提高規(guī)劃、設計、施工、運營、安全方面管理水平,實現(xiàn)交通管理決策協(xié)同化和智能化,確保交通系統(tǒng)安全高效的運行,如圖所示。

    1物理世界采集現(xiàn)實中車載、氣象、應力等傳感器數(shù)據(jù)與虛擬模型孿生,利用數(shù)據(jù)層、表征層融合,達到對交通運行狀態(tài)的充分感知、動態(tài)監(jiān)測和可視化仿真。如通過反重力插值(Inverse Distance Weighted, IDW)根據(jù)監(jiān)測點風速數(shù)據(jù)估計目標區(qū)域內風速情況,又如利用河面浮標位置實時的對水體進行仿真建模,得出實時的橋下凈空和水體輪廓,繼而促進通航、及防汛工作。

    2虛實交互在規(guī)劃期和設計期,工程并不存在于物理空間,難以做出對周邊環(huán)境(視線、光照)、工程量、災害仿真、視覺駕駛疲勞等應用分析,而通過虛擬空間,這一問題得到極大解決。而在運營期,通過物理世界功能實現(xiàn)的感知矢量結果,還可快速關聯(lián)出受到某種影響的交通對象,做出應急決策;隨著虛擬空間的精度和數(shù)據(jù)傳輸速度的提高,虛擬測量工具可應用于無人駕駛技術。因此,虛實交互將定義智能交通發(fā)展新模式。

    3災害監(jiān)控及安全輔助決策服務通過交通數(shù)字孿生系統(tǒng)可有效對泥石流、城市內澇等自然災害進行仿真模擬,得出其影響范圍,繼而提高安全管理與應急保障水平。如針對城市內澇,在擁有某城市的DEM時,可根據(jù)V8算法計算出區(qū)域內的流向、繼而得出區(qū)域內在一定降雨量下地面流量情況,結合某點地面積水實時監(jiān)測數(shù)據(jù),即可得出區(qū)域的實時積水特征矢量(工作流腳本如所示),通過該特征矢量關聯(lián)出未受損的運輸網(wǎng)絡,繼而在道路通行能力受損情況下,使用VRP方法提供可行的路徑規(guī)劃。

 

原文來自:http://www.nutritioncertificationboard.com/blog/index.php/article/20.html

標簽:三維GIS技術  

我要評論

熱門標簽

數(shù)字孿生  智慧城市  三維可視化  城市大腦  智慧社區(qū)  三維GIS  新基建  智慧交通  智慧園區(qū)  3DGIS  智慧環(huán)保  智慧安防  大數(shù)據(jù)  市域治理  地理信息  物聯(lián)網(wǎng)  數(shù)字化  智慧大腦  GIS  智慧物流  智慧旅游  智能化  5G  智慧管廊  GIS地理信息  管理系統(tǒng)  智慧消防  應急指揮  智慧電網(wǎng)  gis系統(tǒng)  3DGIS+BIM  智慧展館  服務平臺  智慧建筑  GIS+BIM  智慧樓宇  智慧工廠    智慧港口  gis技術  煙草  智慧管理  gis  智慧景區(qū)  智慧水務  智慧電力  3dgis  三維gis  三維gis系統(tǒng)  ZTMapGIS仿真地圖  GIS技術  智能交通  供應鏈  gis行業(yè)  應急管理  BIM  智能建筑  工業(yè)互聯(lián)網(wǎng)  智慧監(jiān)獄  元宇宙  智慧工地  綜合治理  地理信息系統(tǒng)  智慧停車  智慧校園  三維gis平臺  智慧農業(yè)  gis三維可視化  智慧能源  三維管網(wǎng)管線  室內地圖  地下綜合管廊  室內導航  智慧文旅  BIM+3DGIS  智慧醫(yī)療  智慧養(yǎng)老  管理平臺  智慧機房  互聯(lián)網(wǎng)  市域社會治理  三維可視化平臺  區(qū)塊鏈  GIS系統(tǒng)  智慧照明  商業(yè)地產  綜合管控治理  室內地圖導航  人工智能  智慧房產  智慧展覽  智慧物業(yè)  3D-GIS  gis平臺  gis平臺系統(tǒng)  BIM輕量化  gis數(shù)據(jù)  三維GIS技術  gis三維系統(tǒng)  三維gis開發(fā)  三維gis技術  三維gis軟件  智慧國土  三維GIS、智慧社區(qū)  智慧燈桿  應急指揮系統(tǒng)  商場可視化  智能監(jiān)所  智慧林業(yè)  土地規(guī)劃gis  動態(tài)渲染  智慧醫(yī)院  智慧物流園區(qū)  智能電網(wǎng)   智慧公交  三維渲染  二三維一體化  VR全景可視化  資產可視化  二三維GIS地理信息平臺  一網(wǎng)統(tǒng)管  智慧管廊綜合監(jiān)管平臺  現(xiàn)代化  智能化建筑  map  三維GIS開發(fā)  GIS開發(fā)  城市規(guī)劃建設  三維GIS軟件  市域社會治理現(xiàn)代化  3D  三維可視化管理平臺  智慧海洋  三維gis渲染平臺  二三維GIS地理信息  智能熱網(wǎng)  三維融合渲染平臺  VR全景  綜治  黨校地圖導航  機管局資產管理  兜逛VR  ZTmap3D  智慧商場  商業(yè)地產可視化  虛擬展館  智慧路燈  室內地圖定位  室內定位  綜合管網(wǎng)  綜合管廊  三位可視化  環(huán)境監(jiān)測  ZTMap 3DGIS  bim  智慧電廠  智慧小區(qū)  3Dgis  ZTMapGIS  智慧鐵路  智慧監(jiān)測  智慧機場  實景三維  智慧服務區(qū)域  2.5D-GIS  地質災害  三維管廊  智慧交通、數(shù)字孿生、3DGIS  智慧工廠、安全生產管理、3DGIS+BIM  數(shù)字孿生技術  智慧管網(wǎng)  三維地圖  信用社GIS  交通仿真  ZTMAP3D  工業(yè)園區(qū)管理  信用社地理信息系統(tǒng)  智慧變電站  三維管網(wǎng)  管廊BIM  智慧制造  園區(qū)招商  2.5D地圖  三維可視化渲染   GIS+BIM  BIM三維模型  安全管理  數(shù)字電網(wǎng)  智慧倉儲  環(huán)保GIS  云gis  gis的基本功能  Webgis  gis地圖  BIM平臺  智慧環(huán)境  城市規(guī)劃  數(shù)據(jù)管理  事故救援  業(yè)務功能  總體設計  Qt  技術詳情  地下管廊  系統(tǒng)改造  gis地圖服務  平臺構建  電子沙盤  地圖符號  系統(tǒng)測試  三維gis平臺功能  電力巡檢  三維gis二次開發(fā) 三維gis接口  管網(wǎng)GIS系統(tǒng)  管網(wǎng)管理GIS服務平臺  高校GIS系統(tǒng)  電網(wǎng)GIS行業(yè)  配電網(wǎng)gis系統(tǒng)  gis市場  gis設備  gis信息系統(tǒng)  gis平臺監(jiān)控  BIM與GIS集成應用  gis軟件系統(tǒng)  移動GIS  視頻監(jiān)控  房產交易地圖  VR虛擬現(xiàn)實  GIS應用平臺  GIS管網(wǎng)系統(tǒng)  消防GIS系統(tǒng)  管網(wǎng)gis系統(tǒng)  gis服務平臺  公共安全  gis高壓設備  數(shù)字經濟  基礎設施建設  無人機  系統(tǒng)架構  GIS平臺  gis空間分析  環(huán)??梢暬?/a>  三維GIS平臺  gis專業(yè)  gis地理信息系統(tǒng)  三維gis軟件系統(tǒng)  gis三維平臺  CIM  數(shù)字城市  頂層設計  gis應用  交通運輸  數(shù)字化城市  三維gis模型  建筑產業(yè)  信息物理系統(tǒng)  自動化  城市應急  大數(shù)據(jù)可視化  系統(tǒng)管理  景觀設計  gis應用實例  gis是什么  可視化技術  開源gis軟件  可視化  假三維地圖  智能樓宇  gis開發(fā)  gis空間數(shù)據(jù)  新零售  導航  應急預案  地產  gis服務  產業(yè)鏈  gis行業(yè)發(fā)展  gis軟件  實景三維gis  
上海臻圖信息技術有限公司
滬ICP備19005932號-1